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Abstract

This paper studies axially compressed buckling of an individual multiwall carbon nanotube subjected to an internal
or external radial pressure. The emphasis is placed on new physical phenomena due to combined axial stress and radial
pressure. According to the radius-to-thickness ratio, multiwall carbon nanotubes discussed here are classified into three
types: thin, thick, and (almost) solid. The critical axial stress and the buckling mode are calculated for various radial
pressures, with detailed comparison to the classic results of singlelayer elastic shells under combined loadings. It is
shown that the buckling mode associated with the minimum axial stress is determined uniquely for multiwall carbon
nanotubes under combined axial stress and radial pressure, while it is not unique under pure axial stress. In particular, a
thin N-wall nanotube (defined by the radius-to-thickness ratio larger than 5) is shown to be approximately equivalent to
a singlelayer elastic shell whose effective bending stiffness and thickness are N times the effective bending stiffness and
thickness of singlewall carbon nanotubes. Based on this result, an approximate method is suggested to substitute a
multiwall nanotube of many layers by a multilayer elastic shell of fewer layers with acceptable relative errors. Espe-
cially, the present results show that the predicted increase of the critical axial stress due to an internal radial pressure
appears to be in qualitative agreement with some known results for filled singlewall carbon nanotubes obtained by
molecular dynamics simulations.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Carbon nanotubes (CNTs) are the most promising new material and expected to play a pivotal role in
nanotechnology (Ball, 2001; Baughman et al., 2002). Mechanical behavior of CNTs, including axially
compressed elastic buckling, has been one of recent topics of considerable interest (Treacy et al., 1996;
Wong et al., 1997; Poncharal et al., 1999; Yakobson et al., 1996; Falvo et al., 1997; Ru, 2000a,b, 2001a,b).
Especially, detailed comparison has shown (Ru, 2000a) that the critical stress and buckling wavelength
predicted by isotropic elastic shell model are in good agreement with the results of axially compressed
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singlewall nanotubes (SWNTs) obtained by molecular dynamics simulations. It is believed that isotropic
elastic shell model can be used to catch main features of buckling behavior of SWNTSs. On the other hand,
axially compressed buckling of multiwall nanotubes (MWNTs) of larger radius-to-thickness ratio has been
studied based on a multiple-elastic shell model (Ru, 2000b, 2001a,b), although a comparison is still not
available due to the lack of relevant experimental results or molecular dynamics simulations for MWNTs.

Recently, SWNTs (Peters et al., 2000; Venkateswaran et al., 1999; Gaal et al., 2000; Ru, 2000c) and
MWNTs (Thomsen et al., 1999; Tang et al., 2000; Venkateswaran et al., 2001; Thomsen and Reich, 2001)
under external radial pressure have been the subject of numerous researches. A remarkable phenomenon is
the pressure-induced abrupt change of physical properties of SWNTs and MWNTs when the applied
pressure reaches a critical value. In an effort to explain these phenomena in terms of pressure-induced
elastic buckling, an elastic honeycomb model for SWNT ropes has been developed by Ru (2000c), which
leads to a simple critical pressure formula in excellent agreement with known experimental data (Peters
et al., 2000; Venkateswaran et al., 1999; Gaal et al., 2000). Furthermore, Wang et al. (2003) have recently
studied elastic buckling of individual MWNTs under external radial pressure based on the multiple-elastic
shell model (Ru, 2000b, 2001a,b). Wang et al.’s results shown that the predicted critical pressure, about 1
GPa, is in reasonably good agreement with the experimental results (about 1.5 GPa, which, to our best
knowledge, is probably the only available experimental data for critical radial pressure of MWNTs) of
Tang et al. (2000) for a specific group of MWNTSs of about 20 layers. This agreement offers an evidence for
the relevance of the multiple-elastic shell model (Ru, 2000b, 2001a,b) to MWNTs, which suggests that the
multiple-elastic shell model can be used to study buckling behavior of MWNTs. Here, it should be men-
tioned that MWNTs under radial internal pressure has been suggested by Thomsen and Reich (2001) as a
simplified model for MWNTs filled with some other molecules.

To our knowledge, elastic buckling of CNTs under combined loadings remains an open topic in the
literature. Very recently, axially compressed buckling of SWNTs filled with other molecules has been studied
by Ni et al. (2002). These authors found that the critical axial strain increases by 10-20% for different filling
molecules at low density, and up to 45% for filling molecules at high density. As we mentioned, the role of
filling molecules can be modeled approximately by an internal pressure. Although the value of this equi-
valent internal pressure depends on the filling molecules and the density, and thus cannot be determined
exactly, its magnitude can be assumed to be of the order of magnitude of the critical radial external pressure
(Thomsen and Reich, 2001) (the latter is about 5% of the critical axial stress for SWNTs (Ru, 2000a)).
Therefore, filled SWNTs can be approximately modeled as SWNTs subjected to an internal radial pressure
not much higher than 5% of the critical axial stress. Motivated by all of the above ideas, the present work is
devoted to a systematic study of axially compressed buckling of MWNTs subjected to an internal or external
radial pressure, with an emphasis on new physical phenomena due to combined radial pressure and axial
stress. The analysis is based on the multiple-elastic shell model (Ru, 2000b, 2001a,b). According to the
radius-to-thickness ratio, multiwall CNTs discussed here are classified into three types: thin, thick, and
(almost) solid. In particular, an approximate method is suggested to reduce the problem of a MWNT of
many layers to a relatively simple problem of a multilayer elastic shell of fewer layers. The accuracy of this
approximate method is demonstrated with examples. Among other results, the present analysis shows that
the predicted increase of critical axial stress due to an internal radial pressure is in qualitative agreement with
the results for filled CNTs obtained by molecular dynamics simulations (Ni et al., 2002).

2. Basic equations

The elastic-shell models have been effectively applied to SWNTs and MWNTs (Yakobson et al., 1996;
Falvo et al., 1997; Ru, 2000a,b, 2001a,b). For MWNTs, a multiple-elastic shell model has been developed
by Ru (2000b, 2001a,b), which assumes that each of the concentric nanotubes is described as an individual
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elastic shell, and the interlayer friction is negligible between any two adjacent tubes. In the absence of any
tangential external force, elastic buckling of a cylindrical shell of radius R is governed by Ru (2000b,
2001a,b), Timoshenko and Gere (1961) and Calladine (1983).
o Fy @ Eh 0*w
DyVw = V'p(x,0) + Fog 5 Viw + 25 VYR e (1)
where x and 0 are axial coordinate and circumferential angular coordinate, respectively, w is the radial
(inward) deflection due to buckling, p(x, 6) is the net normal (inward) pressure due to buckling, . and Fp
are the known uniform axial and circumferential membrane forces prior to buckling, Dy and % are the
effective bending stiffness and thickness of the shell, and E is Young’s modulus. Here, the effective bending
stiffness Dy can be independent of the thickness #, and thus not necessarily proportional to 4 cube.

The present work studies elastic buckling of a MWNT under combined axial stress and radial pressure,
as shown in Fig. 1. Applying Eq. (1) to each of all concentric tubes of a MWNT, elastic buckling of a
MWNT is governed by the N coupled equations

1) A2 4
F 0 Et; 0*w
8. _ 4 (1) 4 Fog 4. = 1
D]Vlwl = lelz +F;C a a2 v R2 602 Vlwl R% ot
R, 0? (2) 0? Et, 64W2
D, V3w, = V4 - FC —V4 —Viw, ——= —=
2 VW) 2{1’23 R2p12:| + Iy o R% e 2W2 B o )
Ry_ o? Y 2 Ety O*w
8 _ N-1 4 4 0 N N
DyViwy = === Vipw-ny + EY 5 Vi + 23 602v R ol

where w;, (k =1,2,...,N) is the (inward) deflection of the kth tube, D, and ¢, are the bending stiffness and
thickness of the kth tube, the subscripts 1,2, ..., N denote the quantities of the innermost tube, its adjacent
tube,... and the outermost tube, respectively, E is Young’s modulus of CNTs, R; is the radius of the

kth tube, F® and F (k=1,2,...,N) are the uniform axial and circumferential membrane forces of the
kth tube prior to buckhng, and
2 1 2
w20 C k=12...N) 3)

T
In addition, py+1) is the (inward) pressure on tube k& due to tube k + 1, py1)e is the (inward) pressure on
tube (k + 1) due to tube k, and they are related by

Ripriesy = —Riipuerie (k=1,2,...,N). (4)
axial stress
Y
- - —- -
- internal pressure -~
external pessure - ‘ - external pressure
— -
— - — -—

axial stress

Fig. 1. Axially compressed buckling of a MWNT under radial external or internal pressure.
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Here, because the pressures py(1) in (2) is the (inward) pressure exerted on the tube & by the tube (k + 1) due
to buckling, thus py; = 0 and pyv+1) = 0. In addition, it should be mentioned that the net (inward) pressure
for each layer is obtained simply as the sum of the outer (inward) pressure and the inner (inward) pressure.
This will not cause any significant error when the radius of each layer is much bigger than its thickness.
Since all nested tubes are originally concentric and the initial interlayer spacing is equal or very close to
the equilibrium spacing, the initial van der Waals interaction pressure between any two adjacent tubes of
undeformed MWNTs is negligible. When the axial stress and radial pressure are applied, the interlayer
spacing changes, and the van der Waals interaction pressure (per unit area) at any point between any two
adjacent tubes depends linearly on the difference of the radial deflections at that point. Thus, the pressure
Pr(e+1) to buckling (see (2)) is related to the deflections of tube & and tube (k 4 1) due to buckling by

P = C[Wz - W1]7p23 = C[Wz - W2]7 <o DIN-1)N = C[WN - WNfl]- (5)

Here, the vdW interaction coefficient ¢ can be estimated as the second derivative of the energy—interlayer
spacing relation of MWNTs using recent data given by Saito et al. (2001) as

320 x erg/cm?
N 0.164>

which are slightly bigger than those used in Ru (2001a,b). Here, because the present analysis is limited to
infinitesimal buckling, the coefficient ¢ is calculated at the initial interlayer spacing (about 0.34 nm). The
curvature-dependency of the coefficient ¢ is neglected here because it is very small when the innermost radii
are much larger than 0.6 nm (Robertson et al., 1992; Gulseren et al., 2002).

Substitution of (5) into (2) leads to N coupled linear equations for N deflections w;, (k =1,2,...,N). The
condition for existence of a non-zero solution will determine the critical values for elastic buckling of
MWNTs under combined axial stress and radial pressure. To this end, one has to first determine all
membrane forces F® and F," (k =1,2,...,N) prior to buckling.

(d =142 x 10~ cm), (6)

3. Pre-buckling analysis

Constraints for the ends of cylindrical shell are usually ignored in pre-buckling analysis (Timoshenko
and Gere, 1961; Calladine, 1983). As a result, under uniform axial stress and radial external or internal
pressure, the axial and circumferential membrane forces F¥ and F(,(k) (k=1,2,...,N) prior to buckling are
some constants. The equilibrium conditions prior to buckling give

k
ok = i _ DR o0 — FY
‘ Py he T Py
where ¢! and ¢*) are the pre-buckling axial and circumferential membrane stresses in the kth tube, py is the
net (inward) pressure to the kth tube, and o, 1s the axial stress applied to the MWNT. Note that (Hooke’s
relation)
w0 _ AR 1

= Z(e® _ e _
€p Rk E(O-() Vo, ) (k 1727"'5N)7 (8)

= Oaxial (k:1727~~-7N)7 (7)

where AR, is the radial (inward) deflection of the kth tube prior to buckling, or the difference between the
initial radius R; and the deformed radius of the kth tube prior to buckling, and v is Poisson’s ratio. Thus,
prior to buckling, we have

ARy 1 (pi Ry
hy

R—k E +V'Gaxia1> (kzlazaaN) (9)
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For pre-buckling analysis (k =2,3,...,N — 1),

P = P12+ pio = c(ARy — AR;) — Py,
Ri_ R;_
Dk = Pr(k+1) + Prh-1) = Di(kr1) — L pui = ¢ [(ARpy — ARy) — =L (AR, — AR ) |, 10
R, R, (10)

Ry_ Ry_
LIP(N—I)N = Pext — C%I(ARN —ARy_1),

PN = DN(N+1) T PN(N-1) = PN(V+1) — R
N N

where Py (= —pio) is the applied internal pressure, and P.y (= pvw+1)) is the applied external pressure.
Substituting (10) to (8) gives N conditions which allow us to determine AR, (k =1,2,3,...,N). Once these
constants are known, all pressure distribution can be determined.

In this paper, according to the radius-to-thickness ratio of MWNTSs, we shall classify all MWNTSs into
the following three typical cases:

(a) thin MWNTs (the innermost radius-to-thickness ratio is larger than five);
(b) thick MWNTs (the innermost radius-to-thickness ratio is around unity);
(¢) (almost) solid MWNTs (the innermost radius-to-thickness ratio is smaller than 1/4).

We shall consider six examples shown in Table 1. Obviously, examples 1, 2 are thin MWNTs, examples
4, 5 are thick MWNTs, while example 6 is solid MWNT. In particular, example 3 for SWNTs is included
here, as a special case N = 1, for a comparison with Ni et al. (2002) which, to our knowledge, is probably
the only available result regarding the effect of filling molecules on the critical axial stress of CNTs. As
suggested by Thomsen and Reich (2001), the role of filling molecules can be modeled approximately by an
internal pressure of the order of magnitude of the critical external pressure. Hence, the results of Ni et al.
(2002) offer a chance for us to compare the present model with molecular dynamics simulations.

The distributions of outer pressure py-1) and the net pressure p; (k=1,2,...,N) normalized by the
axial stress for three representative examples (1, 4 and 6) are shown in Figs. 2-4 and 5-7 for combined axial
stress and external or internal pressure, respectively. In Figs. 2-4, the pressure distribution under combined
axial stress and external pressure is given for various external pressure-to-axial stress ratio ¢;. It is seen that
both the net pressure p; and the outer pressure py(1) decrease monotonically from the outermost tube to
the innermost tube, and are very low for the innermost few tubes of a thick (example 4) or solid (example 6)
MWNT. In particular, for thin MWNTs (example 1), the outer pressure is almost linearly distributed, and
the net pressure is almost constant. This means that all concentric tubes of a thin MWNT almost equally
share the applied external pressure. In this case, as will be shown below, a thin N-wall CNT is approxi-
mately equivalent to a single layer elastic shell of the average radius of the MWNT.

In addition, the net pressure p; and the outer pressure py(.1) for combined axial stress and internal
pressure are shown in Figs. 5-7 for various internal pressure-to-axial stress ratio ¢;. It is seen from Figs. 5-7
that, both the net pressure p, and the outer pressure py(1) decrease monotonically from the innermost tube

Table 1
The geometrical data for examples of MWNTs
Example Thin MWNTSs Thick MWNTs Solid MWNTs
The example number 1 2 3 4 5 6
R, (nm) 8.5 18 0.65 2.7 6.5 0.65
R /Nt 5.00 6.62 1.9 0.99 1.20 0.24
N 5 8 1 8 16 8

R, is the innermost radius of a MWNT, N is the number of layers of the MWNT, and ¢ (=0.34 nm) is the effective thickness of a
SWNT.
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Fig. 2. Pre-buckling pressure distribution under combined axial stress and external pressure (example 1).
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Fig. 3. Pre-buckling pressure distribution under combined axial stress and external pressure (example 4).

to the outermost tube, and are very low for the outermost few tubes of a thick (example 4) or solid (example
6) MWNT. Therefore, the applied internal pressure only significantly affects the innermost few tubes, and
has little influence on the pressure distributions of the outermost tubes of thick or solid MWNTs. On the
other hand, for thin MWNTs (example 1), it is seen from Fig. 5 that the outer pressure can be considered to
be nearly linearly distributed and the net pressure be nearly constant.

4. Buckling analysis

With the known net pressure distribution, we are now able to study elastic buckling of MWNTSs under
combined axial stress and radial external or internal pressure. Here, we shall consider that the ends of all
tubes are simply supported. Thus, the buckling mode is given by

wk:Aksiannxcoan (m=1), (11)
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Fig. 4. Pre-buckling pressure distribution under combined axial stress and external pressure (example 6).
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where 4; (k=1,2,...,N) are some real coefficients, L is the length of the MWNT, m is the axial half
wavenumber, and # is the circumferential wavenumber. Introducing (11), together with the known net
pressure distribution (see Section 3), into Egs. (2) gives
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These Eqgs. (12) can be written into

Ay
Ay
M(m,n)y,n| . | =0. (13)
Ay
Thus, the existence condition of a non-zero solution of 4; (k=1,2,...,N) is
det M = 0. (14)

This condition determines a relationship between the applied axial stress g, and (m,n). Throughout the
paper, we shall assume that L = 12Ry (the outermost radius), and v = 0.3 (Falvo et al., 1997), D = 0.85 eV
and Et = 360 J/m? (Yakobson et al., 1996; Ru, 2000a).

4.1. An approximate method for MWNTs of many layers (example 5)

As mentioned before, a thin N-wall CNT can be approximately modeled as a singlelayer elastic shell with
the equivalent bending stiffness ND and the thickness Nt (where D and ¢ are effective bending stiffness and
thickness of SWNTSs). A similar conclusion has been drawn for axially compressed buckling (Ru, 2001a,b)
and externally pressured buckling (Wang et al., 2003) of thin MWNTs. Based on these results, an
approximate method is suggested here to substitute a (not necessarily thin) MWNT of many layers by a
multilayer elastic shell of fewer layers. This simplified method could further improve the effectiveness of the
multiple-elastic shell model (Ru, 2000b, 2001a,b) especially when the number N of nested tubes is very large
(such as example 5).

To illustrate this approximate method, let us apply it to examples 4 and 5. First, for example 4 consisting
of eight layers, let us treat the outermost three layers as a singlelayer shell (the layer IV) with bending
stiffness 3D and thickness 3¢. Obviously, the radius-to-thickness ratio of this new layer is larger than 5 and
thus it can be treated as a thin layer. Next, the following two tubes are treated as another singlelayer shell
(the layer III) with bending stiffness 2D and thickness 2¢, with the radius-to-thickness ratio larger than 6.
Further, the next two tubes are treated as another singlelayer shell (the layer II) with bending stiffness 2D
and thickness 2¢, with the radius-to-thickness ratio larger than 5. Finally, the innermost layer is treated as a
singlelayer elastic shell (the layer I). Thus, the original eight-layer shell (with the layers 1-8) is reduced to a
four-layer shell (with the layers I-IV). Egs. (2) can now be used to this new four-layer shell with: D; = D,
D, =2D, D3 =2D, Dy =3D, t; =t, t, = 2t, t; = 2t and t; = 3¢, and the radius and the deflection of each
new layer should be understood as its average radius and the deflection of its middle line. In addition, the
net pressure distribution stays unchanged, and thus the net pressure for every new layer can be obtained
directly from the data shown in Section 3. On the other hand, the vdW interaction pressure on the layer 111
due to the layer IV (the new outermost layer) is determined by the spacing change between the layer 5 and
the layer 6, and is equal to ¢(ws — ws). Assume that the change of interlayer spacing due to buckling is
approximately uniform between the middle lines of the two adjacent new layers (the layer IV and III), thus
we have (wiy — wip) = (wg — ws) X (the number of the layers between the two middle lines). Thus, the vdW
pressure on the layer 111 due to the layer IV is ¢(wry — wpp)/2.5. Similar modification should be made to the
vdW interaction pressure between any other adjacent new layers. Here, the interaction pressure between
any two adjacent layers within each new layer is an “internal force” for the new layer and this is not
accounted as an external pressure. As will be seen later, comparison between the results based on this
approximate method with the exact solution for example 4 shows that the relative errors of this method are
limited to 10 %.
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Table 2

Substitution of a five-layer elastic shell for a MWNT of 16 layers (example 5)
The new layer number 1 I 111 v A\
k 1 3 3 4 5
h (nm) 0.34 1.02 1.02 1.36 1.70
Ripner (nm) 6.5 6.84 7.86 8.88 10.24
Rinner /1 6.71 7.71 6.53 6.02

k is the number of concentric tubes of each new layer, # and Rjy,.- are thickness and the inner radius of each new layer.

In this paper, we shall apply this approximate method to example 5 of 16 layers. In this case, as shown in
Table 2, the outermost five layers are treated as a singlelayer shell with bending stiffness 5D and thickness
5t. Obviously, the radius-to-thickness ratio of this new layer is larger than 6, and thus it can be treated as a
thin shell. Next, the next four tubes are treated as another singlelayer shell with bending stiffness 4D and
thickness 4¢, with the radius-to-thickness ratio larger than 6. Then, the next three tubes will be treated as
another singlelayer shell with bending stiffness 3D and thickness 3¢, with the radius-to-thickness ratio larger
than 7. Further, the next singlelayer shell also consists of three tubes and has bending stiffness 3D, thickness
3¢, and the radius-to-thickness ratio larger than 7. Finally, the innermost layer is treated as a singlelayer
elastic shell. Thus, the original MWNT of 16-layer is reduced to a five-layer shell. In what follows, all
results for example 5 will be obtained with this approximate method.

4.2. Pure axial load

First, let us examine elastic buckling of MWNTs under pure axial stress. Prior related works have been
essentially limited to SWNTs (Yakobson et al., 1996; Ru, 2000a) and thin MWNTs of larger radius-to-
thickness ratio (Ru, 2000b, 2001a,b). Here, instead, we shall consider all three types of MWNTs, including
thick and solid MWNTs. The dependency of axial buckling stress on the wavenumbers (m, n) is shown in
Figs. 8-12 for five examples (examples 1, 2, 4, 5 and 6) of MWNTs, respectively. An interesting general
result is that, similar to classic results of axially compressed buckling of elastic thin shells (Timoshenko and
Gere, 1961; Calladine, 1983), the wavenumbers corresponding to the minimum axial stress are not unique
for all three types of MWNTSs. More precisely, there always is more than one combination of (m,n) which

24+ ""“ wOandi

] R pure axial load
261 ‘”"‘:.‘. critical axial stress =4 481GPa i
A7t
28t

29t

Ln{ axial stress [ c.1nm)

L I I
40 50 60 70 80 90 100 110

Fig. 8. The dependency of axial stress on the wavenumbers (m,n) (example 1).
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Fig. 12. The dependency of axial stress on the wavenumbers (m,n) (example 6).

corresponds to the same minimum (critical) axial stress. As a result, the wavenumbers of the buckling mode
of MWNTs under pure axial stress cannot be determined uniquely.

As mentioned before, many results suggested that a thin MWNT can be approximated by an equivalent
singlelayer shell whose effective bending stiffness and thickness are N times the effective bending stiffness
and thickness of singlewall CNTs. For the sake of comparison, buckling behavior of singlelayer shells
equivalent to two thin MWNTs (examples 1 and 2) in the above sense are shown in Figs. 13 and 14,
respectively. Comparison between Figs. 8 and 13, and between Figs. 9 and 14, indicates that thin N-wall
CNTs can indeed be well approximated by a singlelayer elastic shell with the equivalent bending stiffness
ND and the thickness Nt. In fact, both the critical axial stress and the associated wavenumbers (m,n) are
almost the same for thin MWNTs and their equivalent singlelayer shells. For example, the critical axial
stress for example 1 by the singlelayer shell model is 4.480 GPa, which is very close to the exact value 4.481
GPa shown in Fig. 8. Similarly, the critical axial stress for example 2 by the singlelayer shell model is 2.186
GPa, very close to the exact value 2.172 GPa. This offers a numerical confirmation of the analytical results

24 T T T T T T T
n=0and 1
250 5% pure axial load 8
KPRV =
= 28] ‘ R=9.28mm i
= critical axial pressure = 4480GPa
gart 1
w
w
o
o 281 1
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31k -
40 50 60 70 80 90 100 110

Fig. 13. The dependency of axial stress on the wavenumbers (m,n) (singlelayer shell equivalent to example 1).
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Fig. 14. The dependency of axial stress on the wavenumbers (m, n) (singlelayer shell equivalent to example 2).

Table 3
Critical axial stress for thick or solid MWNTSs (examples 4-6) with comparison to the critical axial stress of a related SWNT
Example Thick MWNTs Solid MWNT
Example number 4 5 6
omwnt (GPa) 9.91 4.46 16.30
Ginner (GPQ) 15.40 6.40 64.00
Gouter (GPa) 8.18 3.58 13.72

omwnr 18 the critical axial stress for a MWNT under axial stress, and oiyner and ooy, are critical axial stresses for related SWNTs with
the innermost radius or outermost radius of the MWNT.

of Ru (2001b) for thin MWNTs. In particular, this means that the critical axial stress of a thin MWNT is
approximately equal to the critical axial stress of a SWNT of the average radius of the MWNT, as stated in
Ru (2001b).

On the other hand, the critical axial stresses for three thick or solid MWNTs (examples 4, 5, and 6) are
summarized in Table 3, with a comparison to the critical axial stress of a SWNT whose radius is equal to
the innermost or the outermost radius of the MWNT. For these examples, the critical axial stress for
MWNT is bounded, from above and from below, respectively, by the critical axial stress of a SWNT of the
innermost radius of the MWNT, and the critical axial stress of a SWNT of the outermost radius of the
MWNT. Here, the results for example 5 of 16 layers are obtained with the approximate method, as shown
in Table 2. In particular, for example 4, the critical axial stress based on this approximate method is 9.99
GPa, in good agreement with the exact value 9.91 GPa obtained by the exact eight-layer model, see Table 4.

4.3. Axial stress combined with an internal pressure

Now, let us consider the combined axial stress and internal pressure. One of main results for elastic
singlelayer shells under combined axial stress and internal pressure (Timoshenko and Gere, 1961; Calla-
dine, 1983) is that the internal pressure has no effect on axisymmetric buckling mode, but has a significant
effect on non-axisymmetric buckling modes. First, for SWNTs, it has been argued (Ru, 2000a) that, due to
some unidentified reasons (such as non-axisymmetric atomic structure of SWNT), the actual buckling mode
of SWNTs under pure axial stress is non-axisymmetric, and can be approximately determined by the
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Table 4
Comparison between exact results for example 4 and results obtained by the approximate method
Loading condition Pure axial stress Combined axial stress and external pressure (¢ = 0)
q1 = 001 q1 = 005 q1 = 01 q1 = 05
Critical axial Exact solution 9.91 7.74 1.91 0.99 0.20
stress (GPa)
Approximate 9.99 8.39 2.01 1.03 0.21
solution
Relative error 0.8% 8.48% 5.07% 4.56% 4.14%

¢ and g, are the external pressure-to-axial stress ratio and the internal pressure-to-axial stress ratio, respectively.
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Fig. 15. The effect of an internal pressure on the critical axial stress of SWNTs.

condition that the circumferential wavelength is equal to the axial wavelength. Based on this assumption,
the relative change of the critical axial stress for example 3 (a SWNT of diameter 1.3 nm) due to an internal
pressure is shown in Fig. 15, as a function of the internal pressure-to-axial stress ratio. It is seen from Fig.
15 that the critical axial stress increases 10%, 20%, and 45% when the internal pressure-to-axial stress ratio
is around 0.04, 0.07 and 0.14, respectively. Therefore, the relative increase of the critical axial stress due to
filling molecules observed by Ni et al. (2002), which is about 10-20% at low density or 45% at high density,
could be explained by an equivalent internal pressure about 5% or 14% of the critical axial stress (or
equivalently, by an equivalent internal pressure which is about the critical external pressure or 2-3 times the
critical external pressure). Since the internal pressure due to filling molecules can be reasonably assumed to
be of the order of magnitude of the critical external pressure (Thomsen and Reich, 2001; Wang et al., 2003),
the present theoretical results appear to be in qualitative agreement with Ni et al.’s results obtained by
molecular dynamics simulations.

For other three representative examples (1, 4 and 6) of MWNTs, we calculated the minimum axial stress
as function of the circumferential wavenumber #n, for various internal pressure-to-axial stress ratios. These
results are shown in Figs. 16-18 for examples 1, 4 and 6, respectively. It is seen from that the internal
pressure has no effect on the axisymmetirc buckling mode (» = 0), but significantly promotes the critical
axial stress for non-axisymmetric modes. In particular, for non-axisymmetric modes, the effect of internal
pressure on the critical axial stress is strong for thin MWNTs (Fig. 16), moderate for thick MWNTs (Fig.
17), and negligible for solid MWNTs (Fig. 18). We noticed that the last conclusion is different from the
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Fig. 16. The effect of an internal pressure on the critical axial stress for various circumferential wavenumber (example 1).
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Fig. 17. The effect of an internal pressure on the critical axial stress for various circumferential wavenumber (example 4).

results of (Wang et al., 2003) for combined internal and external pressures (without axial stress) where the
internal pressure has a moderate effect on the critical external pressure even for solid MWNTs.

4.4. Axial stress combined with an external pressure

Finally, let us examine elastic buckling of MWNTs under combined axial stress and external pressure.
Here we consider all examples 1-6, as well as an additional thin SWNT of radius 5.3 nm. The critical axial
stress (under pure axial stress) for these seven examples is 4.481, 2.172, 63.962, 9.911, 4.460, 16.300 and
8.153 GPa, and the critical external pressure (under pure external pressure) is 0.0083, 0.0021, 2.098, 0.102,
0.0297, 1.8805 and 0.0093 GPa, respectively. These critical axial stresses and critical external pressures are
obtained by following the procedures demonstrated in Sections 3 and 4 of the present paper and Wang et al.
(2003). Two main results for elastic thin shells under combined axial stress and external pressure (Timo-
shenko and Gere, 1961; Calladine, 1983) are that (1) the buckling mode can be determined uniquely and is
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Fig. 18. The effect of an internal pressure on the critical axial stress for various circumferential wavenumber (example 6).

characterized by m = 1; (2) the critical condition expressed by a relation between the axial stress and the
external pressure is nearly linear. For all examples discussed here, the conclusion that the buckling mode
can be determined uniquely remains true, although the buckling mode is not always characterized by m = 1.
To examine the interaction between the axial stress and external pressure, the critical values of the axial
stress and external pressure are calculated with various external pressure-to-axial stress ratios, and the
critical condition given in terms of the two critical values, together with the corresponding wavenumbers
(m, n), is shown in Figs. 19 and 20 for SWNTs (example 3) and MWNTs (all other examples), respectively.
In particular, when the external pressure-to-axial stress ratio is equal to 0.01, 0.05, 0.1 and 0.5, the critical
axial stress obtained by the approximate method for example 4 is 8.39, 2.01, 1.03 and 0.21 GPa, respec-
tively, which are in good agreement with the exact result 7.74, 1.91, 0.99 and 0.20 GPa (see Table 4).
Therefore, it is expected that the approximate method suggested here can be used to reduce the number of
layers of MWNTSs without substantial relative errors.
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Fig. 19. The critical condition for SWNTs under combined axial stress and external pressure (example 3).
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Fig. 20. The critical condition for MWNTs under combined axial stress and external pressure (examples 1, 2, 4, 5 and 6).

It is seen from Figs. 19 and 20 that, the critical condition as a relation between the axial stress and the
external pressure is apparently nonlinear for all six examples given in Table 1. This discrepancy with the
classic results of elastic thin shells is due to the fact that the radius-to-thickness ratio for these examples is
too small compared to that of conventional elastic thin shells (Timoshenko and Gere, 1961; Calladine,
1983). In other words, the critical condition is expected to be nearly linear when the radius-to-thickness
ratio of CNTs is sufficiently large. In fact, the example of SWNT of radius 5.3 nm shown in Fig. 19
confirms that the critical condition is indeed nearly linear, because of the sufficient large ratio-to-thickness
ratio.

5. Conclusions

This paper gives a systematic analysis of axially compressed buckling of individual multiwall CNTs
subjected to radial internal or external pressure. According to their radius-to-thickness ratios, the multiwall
CNTs discussed here are classified into three types: thin, thick, and (almost) solid. Our main results are
summarized as follows:

(1) A thin N-wall nanotube (defined by the radius-to-thickness ratio larger than 5) can be approximately
modeled as a singlelayer elastic shell whose effective bending stiffness and thickness are N times the
effective bending stiffness and thickness of singlewall carbon nanotubes. Based on this result and those
previously obtained in Ru (2001b) and Wang et al. (2003), an approximate method is suggested to sub-
stitute a MWNT of many layers by a multilayer elastic shell of fewer layers. The effectiveness and
accuracy of this approximate method are demonstrated with examples. This approximate method could
further improve the effectiveness of the multiple-elastic shell model developed in Ru (2000b, 2001a,b)
and Wang et al. (2003) especially for MWNTs of large number of layers.

(2) Pure axial stress. There always is more than one combination of the axial and circumferential wave-
numbers of the buckling mode which corresponds to the same minimum axial stress. On the other hand,
the critical axial stress of a thin MWNT is approximately equal to the critical axial stress of a SWNT of
the average radius of the MWNT, while the critical axial stress of a thick or solid MWNT is bounded,
from above and from below, respectively, by the critical axial stress of a SWNT of the innermost radius
of the MWNT, and the critical axial stress of a SWNT of the outermost radius of the MWNT.
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Combined axial stress and internal pressure. The internal pressure has a significant effect on the critical
axial stress for non-axisymmetric modes for both SWNTs and MWNTs discussed here, while it has no
effect on the axisymmetirc buckling mode (n = 0). As a result, in the absence of any other factor which
makes axisymmetric mode prohibited, the critical axial stress could be determined by the axisymmetric
mode (n = 0). In addition, for non-axisymmetric modes, the effect of internal pressure on the critical
axial stress is strong for thin MWNTs, moderate for thick MWNTs, and negligible for solid MWNTs.
In particular, the present results for a special case of SWNTSs appear to be in qualitative agreement with
Ni et al.’s results (Ni et al., 2002) obtained by molecular dynamics simulations.

Combined axial stress and external pressure. The buckling mode can be determined uniquely in this case,
although it is not always characterized by m = 1. The critical condition, expressed as a relation between
the axial stress and the external pressure, is strongly nonlinear for all examples. The discrepancy be-
tween this nonlinear relation and the well-known nearly linear relation for elastic thin shells (Timo-
shenko and Gere, 1961; Calladine, 1983) is due to the fact that the radius-to-thickness ratio for the
present examples is too small compared to that of conventional elastic thin shells. Indeed, as shown
in the paper, the nonlinear relation reduces to a nearly linear one when the radius-to-thickness ratio
is sufficiently large.

These results, together with Ru (2000a) and Wang et al. (2003), show convincingly that elastic shell

model can be used to describe overall mechanical behavior of CNTs with characteristic length much larger
than the C—C bond length (about 0.14 nm) of CNTs. On the other hand, we would like to comment that
elastic shell model would be questionable for highly localized deformation with very small characteristic
length comparable to the C—C bond length of CNTs, such as cracks or local buckling of very small
wavelength.
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