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Abstract

This paper studies axially compressed buckling of an individual multiwall carbon nanotube subjected to an internal

or external radial pressure. The emphasis is placed on new physical phenomena due to combined axial stress and radial

pressure. According to the radius-to-thickness ratio, multiwall carbon nanotubes discussed here are classified into three

types: thin, thick, and (almost) solid. The critical axial stress and the buckling mode are calculated for various radial

pressures, with detailed comparison to the classic results of singlelayer elastic shells under combined loadings. It is

shown that the buckling mode associated with the minimum axial stress is determined uniquely for multiwall carbon

nanotubes under combined axial stress and radial pressure, while it is not unique under pure axial stress. In particular, a

thin N-wall nanotube (defined by the radius-to-thickness ratio larger than 5) is shown to be approximately equivalent to
a singlelayer elastic shell whose effective bending stiffness and thickness are N times the effective bending stiffness and

thickness of singlewall carbon nanotubes. Based on this result, an approximate method is suggested to substitute a

multiwall nanotube of many layers by a multilayer elastic shell of fewer layers with acceptable relative errors. Espe-

cially, the present results show that the predicted increase of the critical axial stress due to an internal radial pressure

appears to be in qualitative agreement with some known results for filled singlewall carbon nanotubes obtained by

molecular dynamics simulations.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Carbon nanotubes (CNTs) are the most promising new material and expected to play a pivotal role in

nanotechnology (Ball, 2001; Baughman et al., 2002). Mechanical behavior of CNTs, including axially
compressed elastic buckling, has been one of recent topics of considerable interest (Treacy et al., 1996;

Wong et al., 1997; Poncharal et al., 1999; Yakobson et al., 1996; Falvo et al., 1997; Ru, 2000a,b, 2001a,b).

Especially, detailed comparison has shown (Ru, 2000a) that the critical stress and buckling wavelength

predicted by isotropic elastic shell model are in good agreement with the results of axially compressed
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singlewall nanotubes (SWNTs) obtained by molecular dynamics simulations. It is believed that isotropic

elastic shell model can be used to catch main features of buckling behavior of SWNTs. On the other hand,

axially compressed buckling of multiwall nanotubes (MWNTs) of larger radius-to-thickness ratio has been

studied based on a multiple-elastic shell model (Ru, 2000b, 2001a,b), although a comparison is still not
available due to the lack of relevant experimental results or molecular dynamics simulations for MWNTs.

Recently, SWNTs (Peters et al., 2000; Venkateswaran et al., 1999; Gaal et al., 2000; Ru, 2000c) and

MWNTs (Thomsen et al., 1999; Tang et al., 2000; Venkateswaran et al., 2001; Thomsen and Reich, 2001)

under external radial pressure have been the subject of numerous researches. A remarkable phenomenon is

the pressure-induced abrupt change of physical properties of SWNTs and MWNTs when the applied

pressure reaches a critical value. In an effort to explain these phenomena in terms of pressure-induced

elastic buckling, an elastic honeycomb model for SWNT ropes has been developed by Ru (2000c), which

leads to a simple critical pressure formula in excellent agreement with known experimental data (Peters
et al., 2000; Venkateswaran et al., 1999; Gaal et al., 2000). Furthermore, Wang et al. (2003) have recently

studied elastic buckling of individual MWNTs under external radial pressure based on the multiple-elastic

shell model (Ru, 2000b, 2001a,b). Wang et al.�s results shown that the predicted critical pressure, about 1

GPa, is in reasonably good agreement with the experimental results (about 1.5 GPa, which, to our best

knowledge, is probably the only available experimental data for critical radial pressure of MWNTs) of

Tang et al. (2000) for a specific group of MWNTs of about 20 layers. This agreement offers an evidence for

the relevance of the multiple-elastic shell model (Ru, 2000b, 2001a,b) to MWNTs, which suggests that the

multiple-elastic shell model can be used to study buckling behavior of MWNTs. Here, it should be men-
tioned that MWNTs under radial internal pressure has been suggested by Thomsen and Reich (2001) as a

simplified model for MWNTs filled with some other molecules.

To our knowledge, elastic buckling of CNTs under combined loadings remains an open topic in the

literature. Very recently, axially compressed buckling of SWNTs filled with other molecules has been studied

by Ni et al. (2002). These authors found that the critical axial strain increases by 10–20% for different filling

molecules at low density, and up to 45% for filling molecules at high density. As we mentioned, the role of

filling molecules can be modeled approximately by an internal pressure. Although the value of this equi-

valent internal pressure depends on the filling molecules and the density, and thus cannot be determined
exactly, its magnitude can be assumed to be of the order of magnitude of the critical radial external pressure

(Thomsen and Reich, 2001) (the latter is about 5% of the critical axial stress for SWNTs (Ru, 2000a)).

Therefore, filled SWNTs can be approximately modeled as SWNTs subjected to an internal radial pressure

not much higher than 5% of the critical axial stress. Motivated by all of the above ideas, the present work is

devoted to a systematic study of axially compressed buckling of MWNTs subjected to an internal or external

radial pressure, with an emphasis on new physical phenomena due to combined radial pressure and axial

stress. The analysis is based on the multiple-elastic shell model (Ru, 2000b, 2001a,b). According to the

radius-to-thickness ratio, multiwall CNTs discussed here are classified into three types: thin, thick, and
(almost) solid. In particular, an approximate method is suggested to reduce the problem of a MWNT of

many layers to a relatively simple problem of a multilayer elastic shell of fewer layers. The accuracy of this

approximate method is demonstrated with examples. Among other results, the present analysis shows that

the predicted increase of critical axial stress due to an internal radial pressure is in qualitative agreement with

the results for filled CNTs obtained by molecular dynamics simulations (Ni et al., 2002).

2. Basic equations

The elastic-shell models have been effectively applied to SWNTs and MWNTs (Yakobson et al., 1996;

Falvo et al., 1997; Ru, 2000a,b, 2001a,b). For MWNTs, a multiple-elastic shell model has been developed
by Ru (2000b, 2001a,b), which assumes that each of the concentric nanotubes is described as an individual
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elastic shell, and the interlayer friction is negligible between any two adjacent tubes. In the absence of any

tangential external force, elastic buckling of a cylindrical shell of radius R is governed by Ru (2000b,

2001a,b), Timoshenko and Gere (1961) and Calladine (1983).

D0r8w ¼ r4pðx; hÞ þ Fx
o2

ox2
r4wþ Fh

R2

o2

oh2
r4w� Eh

R2

o4w
ox4

; ð1Þ

where x and h are axial coordinate and circumferential angular coordinate, respectively, w is the radial

(inward) deflection due to buckling, pðx; hÞ is the net normal (inward) pressure due to buckling, Fx and Fh

are the known uniform axial and circumferential membrane forces prior to buckling, D0 and h are the

effective bending stiffness and thickness of the shell, and E is Young�s modulus. Here, the effective bending
stiffness D0 can be independent of the thickness h, and thus not necessarily proportional to h cube.

The present work studies elastic buckling of a MWNT under combined axial stress and radial pressure,
as shown in Fig. 1. Applying Eq. (1) to each of all concentric tubes of a MWNT, elastic buckling of a

MWNT is governed by the N coupled equations
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where wk ðk ¼ 1; 2; . . . ;NÞ is the (inward) deflection of the kth tube, Dk and tk are the bending stiffness and
thickness of the kth tube, the subscripts 1; 2; . . . ;N denote the quantities of the innermost tube, its adjacent

tube,. . . and the outermost tube, respectively, E is Young�s modulus of CNTs, Rk is the radius of the

kth tube, F ðkÞ
x and F ðkÞ

h ðk ¼ 1; 2; . . . ;NÞ are the uniform axial and circumferential membrane forces of the

kth tube prior to buckling, and

r2
k ¼

o2

ox2
þ 1

R2
k

o2

oh2
ðk ¼ 1; 2; . . . ;NÞ: ð3Þ

In addition, pkðkþ1Þ is the (inward) pressure on tube k due to tube k þ 1, pðkþ1Þk is the (inward) pressure on
tube ðk þ 1Þ due to tube k, and they are related by

Rkpkðkþ1Þ ¼ �Rkþ1pðkþ1Þk ðk ¼ 1; 2; . . . ;NÞ: ð4Þ

axial stress

internal pressure
external pessure external pressure

axial stress

Fig. 1. Axially compressed buckling of a MWNT under radial external or internal pressure.
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Here, because the pressures pkðkþ1Þ in (2) is the (inward) pressure exerted on the tube k by the tube ðk þ 1Þ due
to buckling, thus p01 ¼ 0 and pNðNþ1Þ ¼ 0. In addition, it should be mentioned that the net (inward) pressure

for each layer is obtained simply as the sum of the outer (inward) pressure and the inner (inward) pressure.

This will not cause any significant error when the radius of each layer is much bigger than its thickness.
Since all nested tubes are originally concentric and the initial interlayer spacing is equal or very close to

the equilibrium spacing, the initial van der Waals interaction pressure between any two adjacent tubes of

undeformed MWNTs is negligible. When the axial stress and radial pressure are applied, the interlayer

spacing changes, and the van der Waals interaction pressure (per unit area) at any point between any two

adjacent tubes depends linearly on the difference of the radial deflections at that point. Thus, the pressure

pkðkþ1Þ to buckling (see (2)) is related to the deflections of tube k and tube ðk þ 1Þ due to buckling by

p12 ¼ c½w2 � w1�; p23 ¼ c½w3 � w2�; . . . ; pðN�1ÞN ¼ c½wN � wN�1�: ð5Þ

Here, the vdW interaction coefficient c can be estimated as the second derivative of the energy–interlayer

spacing relation of MWNTs using recent data given by Saito et al. (2001) as

c ¼ 320	 erg=cm2

0:16d2
ðd ¼ 1:42	 10�8 cmÞ; ð6Þ

which are slightly bigger than those used in Ru (2001a,b). Here, because the present analysis is limited to

infinitesimal buckling, the coefficient c is calculated at the initial interlayer spacing (about 0.34 nm). The

curvature-dependency of the coefficient c is neglected here because it is very small when the innermost radii

are much larger than 0.6 nm (Robertson et al., 1992; Gulseren et al., 2002).

Substitution of (5) into (2) leads to N coupled linear equations for N deflections wk ðk ¼ 1; 2; . . . ;NÞ. The
condition for existence of a non-zero solution will determine the critical values for elastic buckling of
MWNTs under combined axial stress and radial pressure. To this end, one has to first determine all

membrane forces F ðkÞ
x and F ðkÞ

h ðk ¼ 1; 2; . . . ;NÞ prior to buckling.

3. Pre-buckling analysis

Constraints for the ends of cylindrical shell are usually ignored in pre-buckling analysis (Timoshenko

and Gere, 1961; Calladine, 1983). As a result, under uniform axial stress and radial external or internal
pressure, the axial and circumferential membrane forces F ðkÞ

x and F ðkÞ
h ðk ¼ 1; 2; . . . ;NÞ prior to buckling are

some constants. The equilibrium conditions prior to buckling give

rðkÞ
h ¼ F ðkÞ

h

hk
¼ � pkRk

hk
; rðkÞ

x ¼ F ðkÞ
x

hk
¼ raxial ðk ¼ 1; 2; . . . ;NÞ; ð7Þ

where rðkÞ
h and rðkÞ

x are the pre-buckling axial and circumferential membrane stresses in the kth tube, pk is the
net (inward) pressure to the kth tube, and raxial is the axial stress applied to the MWNT. Note that (Hooke�s
relation)

eðkÞh ¼ DRk

Rk
¼ 1

E
ðrðkÞ

h � mrðkÞ
x Þ ðk ¼ 1; 2; . . . ;NÞ; ð8Þ

where DRk is the radial (inward) deflection of the kth tube prior to buckling, or the difference between the

initial radius Rk and the deformed radius of the kth tube prior to buckling, and m is Poisson�s ratio. Thus,
prior to buckling, we have

DRk

Rk
¼ � 1

E
pk 
 Rk

hk

�
þ m 
 raxial

�
ðk ¼ 1; 2; . . . ;NÞ: ð9Þ

3896 C.Y. Wang et al. / International Journal of Solids and Structures 40 (2003) 3893–3911



For pre-buckling analysis ðk ¼ 2; 3; . . . ;N � 1Þ,

p1 ¼ p12 þ p10 ¼ cðDR2 � DR1Þ � Pint;

pk ¼ pkðkþ1Þ þ pkðk�1Þ ¼ pkðkþ1Þ �
Rk�1

Rk

 pðk�1Þk ¼ c 
 ðDRkþ1

�
� DRkÞ �

Rk�1

Rk
ðDRk � DRk�1Þ

�
;

pN ¼ pNðNþ1Þ þ pNðN�1Þ ¼ pNðNþ1Þ �
RN�1

RN
PðN�1ÞN ¼ Pext � c

RN�1

RN
ðDRN � DRN�1Þ;

ð10Þ

where Pint ð¼ �p10Þ is the applied internal pressure, and Pext ð¼ pNðNþ1ÞÞ is the applied external pressure.

Substituting (10) to (8) gives N conditions which allow us to determine DRk ðk ¼ 1; 2; 3; . . . ;NÞ. Once these
constants are known, all pressure distribution can be determined.

In this paper, according to the radius-to-thickness ratio of MWNTs, we shall classify all MWNTs into

the following three typical cases:

(a) thin MWNTs (the innermost radius-to-thickness ratio is larger than five);

(b) thick MWNTs (the innermost radius-to-thickness ratio is around unity);

(c) (almost) solid MWNTs (the innermost radius-to-thickness ratio is smaller than 1/4).

We shall consider six examples shown in Table 1. Obviously, examples 1, 2 are thin MWNTs, examples

4, 5 are thick MWNTs, while example 6 is solid MWNT. In particular, example 3 for SWNTs is included

here, as a special case N ¼ 1, for a comparison with Ni et al. (2002) which, to our knowledge, is probably
the only available result regarding the effect of filling molecules on the critical axial stress of CNTs. As

suggested by Thomsen and Reich (2001), the role of filling molecules can be modeled approximately by an

internal pressure of the order of magnitude of the critical external pressure. Hence, the results of Ni et al.

(2002) offer a chance for us to compare the present model with molecular dynamics simulations.

The distributions of outer pressure pkðkþ1Þ and the net pressure pk ðk ¼ 1; 2; . . . ;NÞ normalized by the

axial stress for three representative examples (1, 4 and 6) are shown in Figs. 2–4 and 5–7 for combined axial

stress and external or internal pressure, respectively. In Figs. 2–4, the pressure distribution under combined

axial stress and external pressure is given for various external pressure-to-axial stress ratio q1. It is seen that
both the net pressure pk and the outer pressure pkðkþ1Þ decrease monotonically from the outermost tube to

the innermost tube, and are very low for the innermost few tubes of a thick (example 4) or solid (example 6)

MWNT. In particular, for thin MWNTs (example 1), the outer pressure is almost linearly distributed, and

the net pressure is almost constant. This means that all concentric tubes of a thin MWNT almost equally

share the applied external pressure. In this case, as will be shown below, a thin N -wall CNT is approxi-

mately equivalent to a single layer elastic shell of the average radius of the MWNT.

In addition, the net pressure pk and the outer pressure pkðkþ1Þ for combined axial stress and internal

pressure are shown in Figs. 5–7 for various internal pressure-to-axial stress ratio q2. It is seen from Figs. 5–7
that, both the net pressure pk and the outer pressure pkðkþ1Þ decrease monotonically from the innermost tube

Table 1

The geometrical data for examples of MWNTs

Example Thin MWNTs Thick MWNTs Solid MWNTs

The example number 1 2 3 4 5 6

R1 (nm) 8.5 18 0.65 2.7 6.5 0.65

R1=Nt 5.00 6.62 1.9 0.99 1.20 0.24

N 5 8 1 8 16 8

R1 is the innermost radius of a MWNT, N is the number of layers of the MWNT, and t (¼ 0.34 nm) is the effective thickness of a

SWNT.
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to the outermost tube, and are very low for the outermost few tubes of a thick (example 4) or solid (example
6) MWNT. Therefore, the applied internal pressure only significantly affects the innermost few tubes, and

has little influence on the pressure distributions of the outermost tubes of thick or solid MWNTs. On the

other hand, for thin MWNTs (example 1), it is seen from Fig. 5 that the outer pressure can be considered to

be nearly linearly distributed and the net pressure be nearly constant.

4. Buckling analysis

With the known net pressure distribution, we are now able to study elastic buckling of MWNTs under

combined axial stress and radial external or internal pressure. Here, we shall consider that the ends of all

tubes are simply supported. Thus, the buckling mode is given by

wk ¼ Ak sin
mp
L

x cos nh ðmP 1Þ; ð11Þ

Fig. 2. Pre-buckling pressure distribution under combined axial stress and external pressure (example 1).

Fig. 3. Pre-buckling pressure distribution under combined axial stress and external pressure (example 4).
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Fig. 6. Pre-buckling pressure distribution under combined axial stress and internal pressure (example 4).

Fig. 5. Pre-buckling pressure distribution under combined axial stress and internal pressure (example 1).

Fig. 4. Pre-buckling pressure distribution under combined axial stress and external pressure (example 6).
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where Ak ðk ¼ 1; 2; . . . ;NÞ are some real coefficients, L is the length of the MWNT, m is the axial half

wavenumber, and n is the circumferential wavenumber. Introducing (11), together with the known net

pressure distribution (see Section 3), into Eqs. (2) gives
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Fig. 7. Pre-buckling pressure distribution under combined axial stress and internal pressure (example 6).
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These Eqs. (12) can be written into

Mðm; nÞN	N

A1

A2

..

.

AN

2
6664

3
7775 ¼ 0: ð13Þ

Thus, the existence condition of a non-zero solution of Ak ðk ¼ 1; 2; . . . ;NÞ is

det M ¼ 0: ð14Þ

This condition determines a relationship between the applied axial stress raxial and ðm; nÞ. Throughout the
paper, we shall assume that L ¼ 12RN (the outermost radius), and m ¼ 0:3 (Falvo et al., 1997), D ¼ 0:85 eV
and Et ¼ 360 J/m2 (Yakobson et al., 1996; Ru, 2000a).

4.1. An approximate method for MWNTs of many layers (example 5)

As mentioned before, a thin N -wall CNT can be approximately modeled as a singlelayer elastic shell with

the equivalent bending stiffness ND and the thickness Nt (where D and t are effective bending stiffness and
thickness of SWNTs). A similar conclusion has been drawn for axially compressed buckling (Ru, 2001a,b)

and externally pressured buckling (Wang et al., 2003) of thin MWNTs. Based on these results, an

approximate method is suggested here to substitute a (not necessarily thin) MWNT of many layers by a

multilayer elastic shell of fewer layers. This simplified method could further improve the effectiveness of the
multiple-elastic shell model (Ru, 2000b, 2001a,b) especially when the number N of nested tubes is very large

(such as example 5).

To illustrate this approximate method, let us apply it to examples 4 and 5. First, for example 4 consisting

of eight layers, let us treat the outermost three layers as a singlelayer shell (the layer IV) with bending

stiffness 3D and thickness 3t. Obviously, the radius-to-thickness ratio of this new layer is larger than 5 and

thus it can be treated as a thin layer. Next, the following two tubes are treated as another singlelayer shell

(the layer III) with bending stiffness 2D and thickness 2t, with the radius-to-thickness ratio larger than 6.

Further, the next two tubes are treated as another singlelayer shell (the layer II) with bending stiffness 2D
and thickness 2t, with the radius-to-thickness ratio larger than 5. Finally, the innermost layer is treated as a

singlelayer elastic shell (the layer I). Thus, the original eight-layer shell (with the layers 1–8) is reduced to a

four-layer shell (with the layers I–IV). Eqs. (2) can now be used to this new four-layer shell with: D1 ¼ D,
D2 ¼ 2D, D3 ¼ 2D, D4 ¼ 3D, t1 ¼ t, t2 ¼ 2t, t3 ¼ 2t and t4 ¼ 3t, and the radius and the deflection of each

new layer should be understood as its average radius and the deflection of its middle line. In addition, the

net pressure distribution stays unchanged, and thus the net pressure for every new layer can be obtained

directly from the data shown in Section 3. On the other hand, the vdW interaction pressure on the layer III

due to the layer IV (the new outermost layer) is determined by the spacing change between the layer 5 and
the layer 6, and is equal to cðw6 � w5Þ. Assume that the change of interlayer spacing due to buckling is

approximately uniform between the middle lines of the two adjacent new layers (the layer IV and III), thus

we have ðwIV � wIIIÞ ¼ ðw6 � w5Þ	 (the number of the layers between the two middle lines). Thus, the vdW

pressure on the layer III due to the layer IV is cðwIV � wIIIÞ=2:5. Similar modification should be made to the
vdW interaction pressure between any other adjacent new layers. Here, the interaction pressure between

any two adjacent layers within each new layer is an ‘‘internal force’’ for the new layer and this is not

accounted as an external pressure. As will be seen later, comparison between the results based on this

approximate method with the exact solution for example 4 shows that the relative errors of this method are
limited to 10 %.
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In this paper, we shall apply this approximate method to example 5 of 16 layers. In this case, as shown in

Table 2, the outermost five layers are treated as a singlelayer shell with bending stiffness 5D and thickness

5t. Obviously, the radius-to-thickness ratio of this new layer is larger than 6, and thus it can be treated as a
thin shell. Next, the next four tubes are treated as another singlelayer shell with bending stiffness 4D and

thickness 4t, with the radius-to-thickness ratio larger than 6. Then, the next three tubes will be treated as

another singlelayer shell with bending stiffness 3D and thickness 3t, with the radius-to-thickness ratio larger
than 7. Further, the next singlelayer shell also consists of three tubes and has bending stiffness 3D, thickness
3t, and the radius-to-thickness ratio larger than 7. Finally, the innermost layer is treated as a singlelayer

elastic shell. Thus, the original MWNT of 16-layer is reduced to a five-layer shell. In what follows, all

results for example 5 will be obtained with this approximate method.

4.2. Pure axial load

First, let us examine elastic buckling of MWNTs under pure axial stress. Prior related works have been
essentially limited to SWNTs (Yakobson et al., 1996; Ru, 2000a) and thin MWNTs of larger radius-to-

thickness ratio (Ru, 2000b, 2001a,b). Here, instead, we shall consider all three types of MWNTs, including

thick and solid MWNTs. The dependency of axial buckling stress on the wavenumbers ðm; nÞ is shown in

Figs. 8–12 for five examples (examples 1, 2, 4, 5 and 6) of MWNTs, respectively. An interesting general

result is that, similar to classic results of axially compressed buckling of elastic thin shells (Timoshenko and

Gere, 1961; Calladine, 1983), the wavenumbers corresponding to the minimum axial stress are not unique

for all three types of MWNTs. More precisely, there always is more than one combination of ðm; nÞ which

Fig. 8. The dependency of axial stress on the wavenumbers ðm; nÞ (example 1).

Table 2

Substitution of a five-layer elastic shell for a MWNT of 16 layers (example 5)

The new layer number I II III IV V

k 1 3 3 4 5

h (nm) 0.34 1.02 1.02 1.36 1.70

Rinner (nm) 6.5 6.84 7.86 8.88 10.24

Rinner=h 6.71 7.71 6.53 6.02

k is the number of concentric tubes of each new layer, h and Rinner are thickness and the inner radius of each new layer.
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Fig. 9. The dependency of axial stress on the wavenumbers ðm; nÞ (example 2).

Fig. 10. The dependency of axial stress on the wavenumbers ðm; nÞ (example 4).

Fig. 11. The dependency of axial stress on the wavenumbers ðm; nÞ (example 5).
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corresponds to the same minimum (critical) axial stress. As a result, the wavenumbers of the buckling mode

of MWNTs under pure axial stress cannot be determined uniquely.

As mentioned before, many results suggested that a thin MWNT can be approximated by an equivalent

singlelayer shell whose effective bending stiffness and thickness are N times the effective bending stiffness

and thickness of singlewall CNTs. For the sake of comparison, buckling behavior of singlelayer shells
equivalent to two thin MWNTs (examples 1 and 2) in the above sense are shown in Figs. 13 and 14,

respectively. Comparison between Figs. 8 and 13, and between Figs. 9 and 14, indicates that thin N -wall
CNTs can indeed be well approximated by a singlelayer elastic shell with the equivalent bending stiffness

ND and the thickness Nt. In fact, both the critical axial stress and the associated wavenumbers ðm; nÞ are
almost the same for thin MWNTs and their equivalent singlelayer shells. For example, the critical axial

stress for example 1 by the singlelayer shell model is 4.480 GPa, which is very close to the exact value 4.481

GPa shown in Fig. 8. Similarly, the critical axial stress for example 2 by the singlelayer shell model is 2.186

GPa, very close to the exact value 2.172 GPa. This offers a numerical confirmation of the analytical results

Fig. 12. The dependency of axial stress on the wavenumbers ðm; nÞ (example 6).

Fig. 13. The dependency of axial stress on the wavenumbers ðm; nÞ (singlelayer shell equivalent to example 1).
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of Ru (2001b) for thin MWNTs. In particular, this means that the critical axial stress of a thin MWNT is
approximately equal to the critical axial stress of a SWNT of the average radius of the MWNT, as stated in

Ru (2001b).

On the other hand, the critical axial stresses for three thick or solid MWNTs (examples 4, 5, and 6) are

summarized in Table 3, with a comparison to the critical axial stress of a SWNT whose radius is equal to

the innermost or the outermost radius of the MWNT. For these examples, the critical axial stress for

MWNT is bounded, from above and from below, respectively, by the critical axial stress of a SWNT of the

innermost radius of the MWNT, and the critical axial stress of a SWNT of the outermost radius of the

MWNT. Here, the results for example 5 of 16 layers are obtained with the approximate method, as shown
in Table 2. In particular, for example 4, the critical axial stress based on this approximate method is 9.99

GPa, in good agreement with the exact value 9.91 GPa obtained by the exact eight-layer model, see Table 4.

4.3. Axial stress combined with an internal pressure

Now, let us consider the combined axial stress and internal pressure. One of main results for elastic

singlelayer shells under combined axial stress and internal pressure (Timoshenko and Gere, 1961; Calla-

dine, 1983) is that the internal pressure has no effect on axisymmetric buckling mode, but has a significant

effect on non-axisymmetric buckling modes. First, for SWNTs, it has been argued (Ru, 2000a) that, due to

some unidentified reasons (such as non-axisymmetric atomic structure of SWNT), the actual buckling mode
of SWNTs under pure axial stress is non-axisymmetric, and can be approximately determined by the

Fig. 14. The dependency of axial stress on the wavenumbers ðm; nÞ (singlelayer shell equivalent to example 2).

Table 3

Critical axial stress for thick or solid MWNTs (examples 4–6) with comparison to the critical axial stress of a related SWNT

Example Thick MWNTs Solid MWNT

Example number 4 5 6

rMWNT (GPa) 9.91 4.46 16.30

rinner (GPa) 15.40 6.40 64.00

router (GPa) 8.18 3.58 13.72

rMWNT is the critical axial stress for a MWNT under axial stress, and rinner and router are critical axial stresses for related SWNTs with

the innermost radius or outermost radius of the MWNT.
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condition that the circumferential wavelength is equal to the axial wavelength. Based on this assumption,

the relative change of the critical axial stress for example 3 (a SWNT of diameter 1.3 nm) due to an internal

pressure is shown in Fig. 15, as a function of the internal pressure-to-axial stress ratio. It is seen from Fig.

15 that the critical axial stress increases 10%, 20%, and 45% when the internal pressure-to-axial stress ratio

is around 0.04, 0.07 and 0.14, respectively. Therefore, the relative increase of the critical axial stress due to
filling molecules observed by Ni et al. (2002), which is about 10–20% at low density or 45% at high density,

could be explained by an equivalent internal pressure about 5% or 14% of the critical axial stress (or

equivalently, by an equivalent internal pressure which is about the critical external pressure or 2–3 times the

critical external pressure). Since the internal pressure due to filling molecules can be reasonably assumed to

be of the order of magnitude of the critical external pressure (Thomsen and Reich, 2001; Wang et al., 2003),

the present theoretical results appear to be in qualitative agreement with Ni et al.�s results obtained by

molecular dynamics simulations.

For other three representative examples (1, 4 and 6) of MWNTs, we calculated the minimum axial stress
as function of the circumferential wavenumber n, for various internal pressure-to-axial stress ratios. These
results are shown in Figs. 16–18 for examples 1, 4 and 6, respectively. It is seen from that the internal

pressure has no effect on the axisymmetirc buckling mode ðn ¼ 0Þ, but significantly promotes the critical

axial stress for non-axisymmetric modes. In particular, for non-axisymmetric modes, the effect of internal

pressure on the critical axial stress is strong for thin MWNTs (Fig. 16), moderate for thick MWNTs (Fig.

17), and negligible for solid MWNTs (Fig. 18). We noticed that the last conclusion is different from the

Fig. 15. The effect of an internal pressure on the critical axial stress of SWNTs.

Table 4

Comparison between exact results for example 4 and results obtained by the approximate method

Loading condition Pure axial stress Combined axial stress and external pressure ðq2 ¼ 0Þ
q1 ¼ 0:01 q1 ¼ 0:05 q1 ¼ 0:1 q1 ¼ 0:5

Critical axial

stress (GPa)

Exact solution 9.91 7.74 1.91 0.99 0.20

Approximate

solution

9.99 8.39 2.01 1.03 0.21

Relative error 0.8% 8.48% 5.07% 4.56% 4.14%

q1 and q2 are the external pressure-to-axial stress ratio and the internal pressure-to-axial stress ratio, respectively.
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results of (Wang et al., 2003) for combined internal and external pressures (without axial stress) where the
internal pressure has a moderate effect on the critical external pressure even for solid MWNTs.

4.4. Axial stress combined with an external pressure

Finally, let us examine elastic buckling of MWNTs under combined axial stress and external pressure.

Here we consider all examples 1–6, as well as an additional thin SWNT of radius 5.3 nm. The critical axial

stress (under pure axial stress) for these seven examples is 4.481, 2.172, 63.962, 9.911, 4.460, 16.300 and

8.153 GPa, and the critical external pressure (under pure external pressure) is 0.0083, 0.0021, 2.098, 0.102,

0.0297, 1.8805 and 0.0093 GPa, respectively. These critical axial stresses and critical external pressures are

obtained by following the procedures demonstrated in Sections 3 and 4 of the present paper and Wang et al.

(2003). Two main results for elastic thin shells under combined axial stress and external pressure (Timo-
shenko and Gere, 1961; Calladine, 1983) are that (1) the buckling mode can be determined uniquely and is

Fig. 16. The effect of an internal pressure on the critical axial stress for various circumferential wavenumber (example 1).

Fig. 17. The effect of an internal pressure on the critical axial stress for various circumferential wavenumber (example 4).
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characterized by m ¼ 1; (2) the critical condition expressed by a relation between the axial stress and the

external pressure is nearly linear. For all examples discussed here, the conclusion that the buckling mode

can be determined uniquely remains true, although the buckling mode is not always characterized by m ¼ 1.

To examine the interaction between the axial stress and external pressure, the critical values of the axial

stress and external pressure are calculated with various external pressure-to-axial stress ratios, and the

critical condition given in terms of the two critical values, together with the corresponding wavenumbers

ðm; nÞ, is shown in Figs. 19 and 20 for SWNTs (example 3) and MWNTs (all other examples), respectively.

In particular, when the external pressure-to-axial stress ratio is equal to 0.01, 0.05, 0.1 and 0.5, the critical
axial stress obtained by the approximate method for example 4 is 8.39, 2.01, 1.03 and 0.21 GPa, respec-

tively, which are in good agreement with the exact result 7.74, 1.91, 0.99 and 0.20 GPa (see Table 4).

Therefore, it is expected that the approximate method suggested here can be used to reduce the number of

layers of MWNTs without substantial relative errors.

Fig. 18. The effect of an internal pressure on the critical axial stress for various circumferential wavenumber (example 6).

Fig. 19. The critical condition for SWNTs under combined axial stress and external pressure (example 3).
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It is seen from Figs. 19 and 20 that, the critical condition as a relation between the axial stress and the

external pressure is apparently nonlinear for all six examples given in Table 1. This discrepancy with the

classic results of elastic thin shells is due to the fact that the radius-to-thickness ratio for these examples is

too small compared to that of conventional elastic thin shells (Timoshenko and Gere, 1961; Calladine,
1983). In other words, the critical condition is expected to be nearly linear when the radius-to-thickness

ratio of CNTs is sufficiently large. In fact, the example of SWNT of radius 5.3 nm shown in Fig. 19

confirms that the critical condition is indeed nearly linear, because of the sufficient large ratio-to-thickness

ratio.

5. Conclusions

This paper gives a systematic analysis of axially compressed buckling of individual multiwall CNTs

subjected to radial internal or external pressure. According to their radius-to-thickness ratios, the multiwall

CNTs discussed here are classified into three types: thin, thick, and (almost) solid. Our main results are

summarized as follows:

(1) A thin N -wall nanotube (defined by the radius-to-thickness ratio larger than 5) can be approximately

modeled as a singlelayer elastic shell whose effective bending stiffness and thickness are N times the

effective bending stiffness and thickness of singlewall carbon nanotubes. Based on this result and those
previously obtained in Ru (2001b) and Wang et al. (2003), an approximate method is suggested to sub-

stitute a MWNT of many layers by a multilayer elastic shell of fewer layers. The effectiveness and

accuracy of this approximate method are demonstrated with examples. This approximate method could

further improve the effectiveness of the multiple-elastic shell model developed in Ru (2000b, 2001a,b)

and Wang et al. (2003) especially for MWNTs of large number of layers.

(2) Pure axial stress. There always is more than one combination of the axial and circumferential wave-

numbers of the buckling mode which corresponds to the same minimum axial stress. On the other hand,

the critical axial stress of a thin MWNT is approximately equal to the critical axial stress of a SWNT of
the average radius of the MWNT, while the critical axial stress of a thick or solid MWNT is bounded,

from above and from below, respectively, by the critical axial stress of a SWNT of the innermost radius

of the MWNT, and the critical axial stress of a SWNT of the outermost radius of the MWNT.

Fig. 20. The critical condition for MWNTs under combined axial stress and external pressure (examples 1, 2, 4, 5 and 6).
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(3) Combined axial stress and internal pressure. The internal pressure has a significant effect on the critical

axial stress for non-axisymmetric modes for both SWNTs and MWNTs discussed here, while it has no

effect on the axisymmetirc buckling mode ðn ¼ 0Þ. As a result, in the absence of any other factor which
makes axisymmetric mode prohibited, the critical axial stress could be determined by the axisymmetric
mode ðn ¼ 0Þ. In addition, for non-axisymmetric modes, the effect of internal pressure on the critical

axial stress is strong for thin MWNTs, moderate for thick MWNTs, and negligible for solid MWNTs.

In particular, the present results for a special case of SWNTs appear to be in qualitative agreement with

Ni et al.�s results (Ni et al., 2002) obtained by molecular dynamics simulations.

(4) Combined axial stress and external pressure. The buckling mode can be determined uniquely in this case,

although it is not always characterized by m ¼ 1. The critical condition, expressed as a relation between

the axial stress and the external pressure, is strongly nonlinear for all examples. The discrepancy be-

tween this nonlinear relation and the well-known nearly linear relation for elastic thin shells (Timo-
shenko and Gere, 1961; Calladine, 1983) is due to the fact that the radius-to-thickness ratio for the

present examples is too small compared to that of conventional elastic thin shells. Indeed, as shown

in the paper, the nonlinear relation reduces to a nearly linear one when the radius-to-thickness ratio

is sufficiently large.

These results, together with Ru (2000a) and Wang et al. (2003), show convincingly that elastic shell

model can be used to describe overall mechanical behavior of CNTs with characteristic length much larger

than the C–C bond length (about 0.14 nm) of CNTs. On the other hand, we would like to comment that
elastic shell model would be questionable for highly localized deformation with very small characteristic

length comparable to the C–C bond length of CNTs, such as cracks or local buckling of very small

wavelength.
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